Evaluating the interaction of water quality and eelgrass in Coos Bay, Oregon using a complete, validated biophysical model

Caitlin Magel University of Washington Tacoma Puget Sound Institute

OOST Meeting, 5 July 2023

W UNIVERSITY of WASHINGTON

Tarang Khangaonkar Adi Nugraha

Dave Sutherland

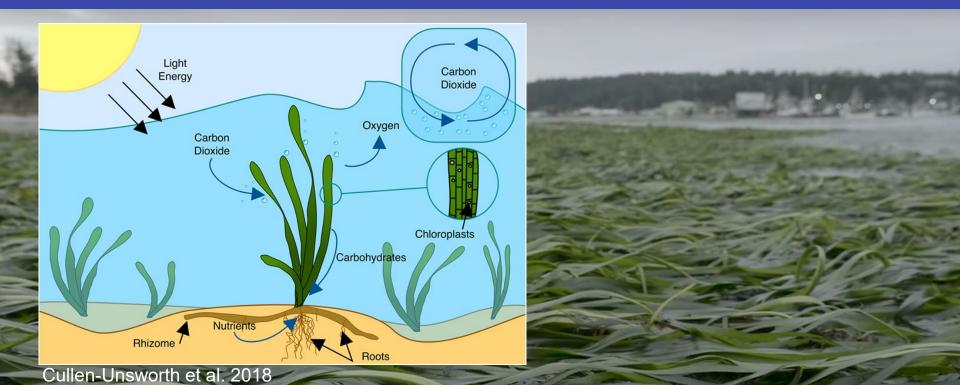
Janet Niessner

Ali Helms Jaime Belanger

Oregon Coordinating Council on Ocean Acidification & Hypoxia

Importance of eelgrass

Eelgrass provides up to \$87,000 in ecosystem services


per hectare per year

COASTAL OCEAN RESEARCH INSTITUTE

Protects coastlines
Provides habitat for fish and birds
Improves water quality and clarity
Enhances ecosystem resilience
Strengthens the coastal economy
Mitigates climate change (OAH)?

Importance of eelgrass

Mitigates climate change (OAH)?

Coos Estuary

Barview

Charleston

Crown Point

Millington

Cooston

RE

Coos Bay

Bunker Hill

Glasgow

lauser

Shorewoo

North Bend

Project Overview

Leverage existing:

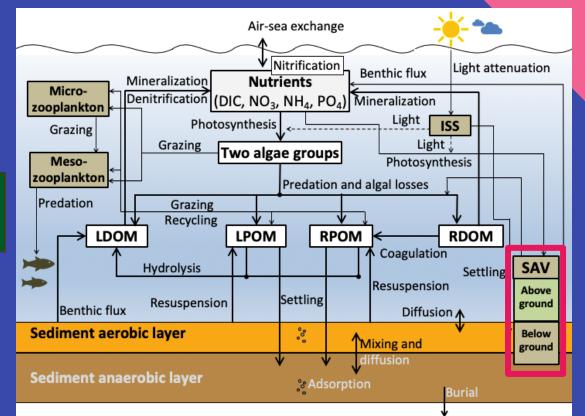
- Water quality and eelgrass monitoring data
- Hydrodynamic circulation model
- Biogeochemical model framework

To produce a biophysical model of Coos Bay with water quality, plankton, and eelgrass, including interactions with the water column and sediment.

Research Objective

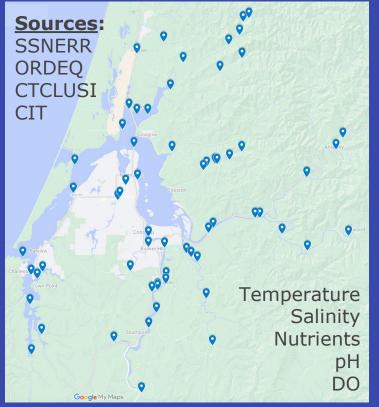
Understand the dynamics of pH, DO, and eelgrass in Coos Bay – in the context of ecosystem services.

- 1. What conditions confer vulnerability to OAH?
- 2. How would changes in eelgrass abundance alter pH and DO conditions and variability?

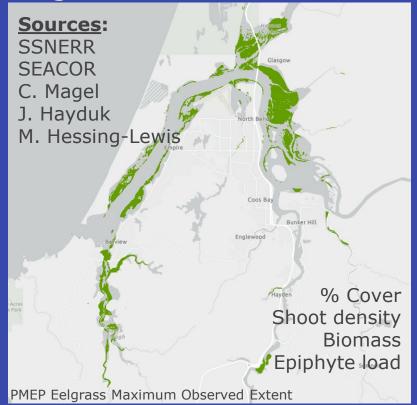

- Invest in Oregon's monitoring network to document oceanographic and biologic conditions, and socio-economic vulnerabilities relating to OAH
- Develop and integrate strategies to reduce causes of excess carbon dioxide (CO₂) and Ocean Acidification and Hypoxia (OAH)
- Support activities and initiatives that promote adaptation and resilience to OAH, for Oregon's human communities and ecosystems
- Communicate OAH science, impacts, and solutions to raise awareness and support decision-making
- . Mobilize agencies to address OAH priorities

Model Background

Run Hydrodynamics U, V, T, S, WSL


Calculate Transport of Water Quality Variables (Nutrients, Phytoplankton, Zooplankton, Carbon DO, pH)

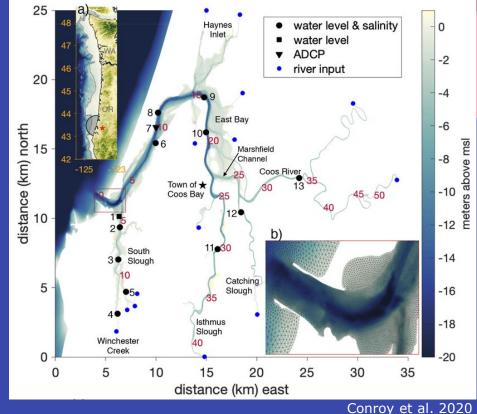
> Source / Sink terms Eutrophication Kinetics



Data collection

Water quality

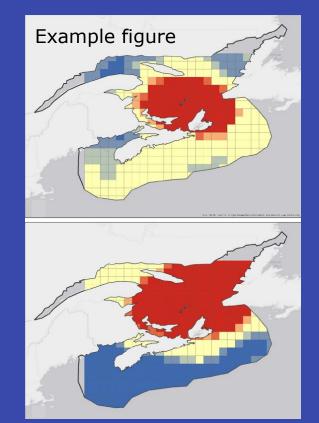
Eelgrass



Model development

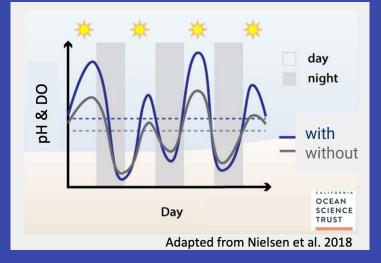
- Prepared grid
 - Grid size & bathymetry
- Established hydrodynamics
 - River inflows (14)
 - Ocean boundary: tides, T & S
- Calibrated hydrodynamics

In progress:


- Setup & calibrate biogeochemistry
- Establish eelgrass initial condition

What conditions confer vulnerability to OAH?

Products:


- Spatio-temporal model of water quality and eelgrass
- > Maps identifying OAH "hotspots"
- Analysis of the ecohydrological processes that confer resilience or vulnerability to OAH

How would changes in eelgrass abundance alter pH and DO conditions and variability?

Products:

- Modeled scenarios comparing conditions with/without eelgrass
- Contour maps showing the influence of eelgrass on water quality

Outreach and Dissemination

Public outreach

- South Slough Visitor's Center
- ➤ Teachers On The Estuary (TOTE) program
- > Charleston Marine Life Center

End users of data and products

- SSNERR: eelgrass restoration and conservation
- ➢ ODSL: update Remove-Fill Guide
- ➤ PMEP: essential fish habitat
- > Coos Bay Estuary Management Plan
- > Shellfish growers/harvesters

Thank you!

Caitlin Magel

magelcai@uw.edu